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Abstract 

Anharmonic and electron-density ref'mements against 
accurate X-ray diffraction data are today almost routine. 
However, the unambiguous identification and separation 
of effects due to anharmonic atomic motion and to 
chemical bonding is impossible with a single X-ray data 
set and difficult even with data measured at different 
temperatures, especially in heavy-atom compounds. For 
cubic site symmetry, analytical expressions are compared 
for the convolutions of: (i) the electron density of a 
spherical free atom with an anharmonic probability 
density distribution (p.d.f.); and (ii) an aspherical atom 
with a Gaussian p.d.f. If both the free atom and the 
deformation functions of the aspherical atom are 
represented by Gaussian-type functions, there exists for 
every set of anharrnonic parameters an equivalent set of 
aspherical-atom parameters but the reverse is not 
necessarily true. Both models are usually suitable for 
parametrizing anharmonicity also in the case of real 
atoms and exponential-type deformation functions. 
Contrary to widespread belief, both models predict a 
qualitatively similar change of the aspherical density 
with decreasing temperature: the extrema move towards 
the atom center and their heights increase except at low 
temperatures. Quantitatively, however, the temperature 
dependence of the adjusted parameters should be 
different: in the case of anharmonicity, the second-, 
third- and fourth-order coefficients should be propor- 
tional to T, T 2 and T 3, respectively, while the population 
factors of the deformation functions should be indepen- 
dent of T. The theory is tested and verified with 
refinements on calculated and on measured X-ray 
structure amplitudes for K2PtC16 at room temperature 
and at 100K, and Si at room temperature. Results for 
KzPtC16 agree well with the anharmonic model. In Si at 
room temperature, the two effects overlap only slightly 
and can be reasonably well identified; they cannot be 
distinguished with simulated high-temperature data. 

1. Introduction 

X-ray diffraction from a crystalline material provides 
information on the thermally and spatially averaged 
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electron density in the crystal. If precise measurements 
are available, the information contained in the structure 
amplitudes may be interpreted not only in terms of 
atomic positions and harmonic displacement parameters 
but also in terms of anharmonic thermal motions and 
effects due to chemical bonding (Coppens, 1993). The 
former may be represented by a Gram-Charlier series 
expansion of a probability density function (Johnson & 
Levy, 1974), the latter by atom-centered multipolar 
deformation functions (Stewart, 1976). The parameters 
of these formalisms are adjusted by least squares to the 
observed X-ray diffraction data. High correlations 
between the two types of parameter may be expected if 
they are adjusted simultaneously, which implies that 
anharmonicity and bonding effects are not clearly 
separable. 

Features observed in difference-electron-density maps 
•P - -  P --  Ppro o f  organic molecules on or near chemical 
bonds may safely be attributed to bonding effects; p 
denotes the actual electron density and Ppro the electron 
density of the free-atom promolecule model (Hirshfeld, 
1991). The interpretation of the difference densities near 
a heavy atom may be more ambiguous since there 3p 
may peak sharply at small distances from the atomic 
center. Near transition-metal atoms in octahedral coordi- 
nation, for example, 3p has often been observed to show 
sharp maxima at only 0.3 to 0.4A from that atomic 
center, which point towards the octahedral faces, whereas 
negative regions are found on the metal-ligand axes 
(Toriumi & Saito, 1983). Such features have been 
assumed to represent bonding effects due to the ligand 
field; the population parameters of the corresponding 
multipolar functions are then related to the occupancies 
of the d orbitals of the metal atoms (Holladay, Leung & 
Coppens, 1983). Qualitatively reasonable values of such 
occupancies have been published, e.g. for pyrite-type 
structures (Stevens & Coppens, 1979; Stevens, DeLucia 
& Coppens, 1980; Nowack, Schwarzenbach & Hahn, 
1991). However, anharmonic motions of the metal atom 
may result in similar features since they are expected to 
have larger amplitudes in directions towards second- 
nearest neighbors and smaller amplitudes towards nearest 
neighbors. The electron density in K2PtC16 (Restori & 
Schwarzenbach, 1993) presents another example that is 
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at the origin of the present work: it may be parametrized 
in terms of both anharmonic and multipolar functions 
since 3p shows compact features close to the atomic 
centers. 

In principle, neutron diffraction should provide an 
unambiguous identification of anharmonic motions. 
However, X-ray diffraction from heavy-atom compounds 
is much more sensitive to anharmonic motions than is 
neutron diffraction, owing to the very high electron 
densities at the atom centers and the correspondingly 
high scattering power at large reciprocal distances. 
K2PtC16 may serve as an example. The coherent 
neutron scattering lengths are b = 9.5, 3.7 and 9.58 fm 
for Pt, K and C1, respectively. The corresponding X-ray 
values are ( e 2 / m c 2 ) f = 1 3 0 . 5 ,  22.2 and 20.6fm 
at s i n 0 / 2 =  1.0A -1 and 52.5, 7.7 and 6.1fm at 
sin 0/2 = 1.5 ~-a [International Tables for  X-ray 
Crystallography (1974); the symbols e, m, c, f have 
their usual meanings]. The integrated reflecting power is 
therefore expected to be at least an order of magnitude 
larger for X-rays than for neutrons even at very large 
Bragg angles. So far, we have been unable to measure 
neutron data for K2PtC16 precisely enough to corroborate 
or contradict the Gram-Charlier coefficients fitted to an 
accurate room-temperature X-ray data set. 

Alternatively, X-ray experiments carried out at several 
temperatures should be capable of distinguishing 
between anharmonic and bonding effects: anharmonic 
motions are supposed to decrease with temperature but 
the static electron density obtained by summing the 
multipolar deformation functions should be independent 
of temperature. However, in this paper, we show that the 
variation with temperature of the dynamic thermally 
smeared density close to heavy atoms is similar for both 
the anharmonic and the bonding models: the locations 
and values of the extrema of 3p vary analogously with 
temperature except at the very lowest temperatures. We 
will compare these theoretical results with refinements 
against X-ray data from K2PtC16 and Si. 

2. Theory 

In the rigid-atom approximation, the dynamic electron 
density of an atom is described by the convolution 
product of the static atomic density and a probability 
density function, 

Pdyn(r) ---- Pstat(r) * P(r). (1) 

In the anharmonic model (referred to as anh), Pstat is 
equal to the free-atom density p0(r) with r = ]lrll and 
P(r) is expanded about a Gaussian density function into a 
Gram-Charlier series. In the bonding-electron-density 
model (referred to as ED), /gstat is represented by po(r) 
plus a set of multipolar deformation functions and P(r) is 
a Gaussian density function. In this work, we assume the 

atom to possess cubic site symmetry; the Gaussian G(U) 
in the expansion of P(r) is thus isotropic with variance U, 

G(U) = (27rU) -3/2 exp[ - ( r  2/2U)]. (2) 

We also assume the free-atom density to be a Gaussian 
with variance B, Po(r) = Z G(B), where Z is the effective 
atomic number. Typical B values are of the order of 
0.01 A 2 (see below). We choose a unitary coordinate 
system, i.e. coordinate axes of unit length parallel to the 
cubic lattice base. 

The convolution integral for the anharrnonically 
vibrating atom is easily evaluated via the Fourier 
transforms of the Gaussian function and the Gram- 
Charlier series [Coppens, 1993, equations (1.2.10.3a) 
and (1.2.11.4), respectively]. The Hermite polynomials 
occurring in the Gram--Charlier expansion of the function 
P(r) are then decomposed into their multipolar 
components. Including terms up to fourth order, we 
obtain for the dynamic atomic electron density Panh(r) 

p~h(r) = Z G ( U  + B){1 + (c 1111 + 2cl122)p4,s(r ) 

)< [40(U + 8)4] -1 + c123p3(r)/(U + B) 3 

+ (cllll -- 3cI122)p4'o(r)/[60(U + B)4]}' (3) 

P3 -- XlX2X3, 

P4,s -- rn - 10(U + B)r  2 + 15(U + B )  2, 

P4,a = x4 + x4 -+- x4 -- 3 ~  -- 3 ~  -- 3 ~ .  

The angular functions P3/r 3 and Pn.a/r 4 of the compo- 
nents x i of r are proportional to the cubic harmonic 
functions K 3 --Y32- and K 4 = Y40+ +Y44+/168, respec- 
tively (Kurki-Suonio, 1977), while the polynomial P4,s is 
spherically symmetric (I = 0). An analogous method 
may be used for calculating Panh of an atom with a non- 
cubic site symmetry, provided P(r) is expanded about an 
isotropic Gaussian distribution; the Gram-Charlier series 
then also contains second-order terms. 

In the bonding model, the static aspherical atom is 
represented by 

oo 
PstatED(r)--Po(r) + ~ Pnlm+Lhn+Ylm+Pn(r), (4) 

nlm+ 

where po(r) is represented by a Gaussian function as 
above, P, tm+ are population factors, Ltm + scaling factors 
and Yl,,+ real spherical harmonic functions (Kurki- 
Suonio, 1977); the radial parts p,(r) are usually 
expressed as exponential functions r~exp(-t~r) or, 
more rarely, with Gaussian functions r~G(cr). We choose 
a set of functions up to fourth order in l centered on a 
cubic site which is equivalent to the deformation 
functions of Hirshfeld (1977): n = 0 ,  2, 4 for 
l = 0, n = l otherwise. In the case of Gaussian radial 
functions, the convolution integral (1) for l # 0 has 
exactly the same form as for the anh case. With 
normalizations Ltm + analogous to Coppens (1993), the 
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dynamic density PED,G(r) for Gaussian deformation 
functions becomes 

PED,O(r) = Z G(U + B) + Pspher(r) + G(U -t- o-) 

× {PK3(rco-)3/Zp3(r)/(U -I- o') 3 

+ PK4(32O-2/45 X 31/2)pa, a(r)/(U + O-)4}, 

Pspher(r) = G(U + O-)([P000 + P2ooU/( U + o-) (5) 

+ P400U2/(U .-1- 0-) 2] -at- [e200o-/(U + 0") 2 

+ 2P4ooUO-/(U + o-)3]r2/3 

+ [P4ooa2/(U + o-)4]r4/15}. 

The first term is the spherical density of the thermally 
smeared free atom as in (3); pspher(r) is a function of the 
monopolar population factors Pn00 as well as of U and o- 
and represents the spherically symmetric deformation 
density; PK3 and PK4 are the populations of the cubic 
multipoles of order l = 3 and 4, respectively (n = / ) ;  P3 
and P4,a are defined in (3). 

The comparison of (3) and (5) shows that the dynamic 
atomic densities of the two models are described by the 
same type of function: for every set of values B, Uanh and 
c J~" in (3), there exists an equivalent set o-, UEO and 
Pnlm+ in (5): 

a = B, UED = Uan h, 
Pooo = (3/8)Z( c1111 -11- 2c1122)/B2, 

P20o ---- -2P00o, P400 = P000, (6) 

PK3 = ZcI23 /(:rfB) 3/2, 

PK4 = (3 X 31/2/128)Z(c 1111 - 3c 1122)/92. 

Thus, for each successful parametrization of a data set in 
terms of the anh model, there exists a completely 
equivalent parametrization in terms of the Gaussian ED 
model, provided that the approximation of the free-atom 
density by a Gaussian is satisfactory. The converse is 
of course not true since o-, UED and all Pntm+ are 
independently adjustable. The ED model is the more 
flexible because the anharmonicity affects all electrons 
while bonding affects mainly the valence shell. Corre- 
spondingly, B is a property of the free atom, in contrast to 
o-. However, if the numerical values of B and a are 
similar, the ED model efficiently parametrizes anhar- 
monic effects. 

The extrema of the lth-order multipolar terms of (3) 
occur at distances rextr from the atomic center, 

rextr(/5k 0) -- [I(U + B)] 1/2, 

rextr(/--0 ) -- {[7 4-(14)I/21(U + B ) }  1/2 and 0; (7) 

l = 0, 3 and 4 refer to the P4,s, P3 and Pa,a polynomials, 
respectively. The values of the extrema are proportional 
to (U +B)  -(t+3)/2. At or above room temperature, U 
usually dominates over B. We conclude that the shape of 
the dynamic electron densities in both the anh and the ED 

models (where B is replaced by o-) show qualitatively the 
same dependence on the temperature. The extrema move 
towards the atom center with decreasing temperature. 
The values of the extrema are commonly believed to 
behave differently for the two models since the c jkm" 
should tend to zero and Pnlm+ should remain constant. 
However, for U > B, the values of the extrema are 
expected to increase with decreasing temperature even in 
the anharmonic case since the decrease of c jkm~ is more 
than balanced by the increase of (U + B) -(t+3)/2. Only 
towards very low temperatures is the evolution old' the 
densities of the two models expected to be very different. 

In electron-density refinements, exponential-type 
radial functions r" exp(-c~r) are more widely used than 
Gaussian-type functions. The far more complicated 
evaluation of the convolution integral (1) for exponential 
functions to obtain PED,E(r) is given in Appendix A. 
Relevant results are similar to those derived from (5). 
Using again the normalizations of Coppens (1993), we 
get 

PED,E(r) = Z G(U + 9) + Pooogoo/8rc + P2oog2o/96zc 

+ Pnoog4o/2880rr + PK3[P3(r)/r 3] g33/60 

+ eK4[Pa,a(r)/r4]g44/(270 x 31/270, (8) 

where the functions g,t(r, a, U) given in Appendix A 
replace the Gaussian-type functions r~G(U + o-) in (5) or 
rnG(U + B) in (3). The distances of the extrema of the 
gnl from the atomic center can be calculated numerically. 
For any given values of U and B (or o-), there exists a 
value for ot such that these distances are the same for both 
formalisms. Numerical calculations for n = I show that 
or(U, B) generally increases with increasing values of U 
and decreasing values of B and is somewhat larger for 
n = 4 than for n = 3; it depends only weakly on U for 
U > 0.02 •2. Typical values of ot for B in the range 
0.005 to 0.02,~, 2 are 40 to 1 5 '  -1 . Most importantly, for 
U > B (or a), the Gaussian-type function is an excellent 
approximation of gnt. Fig. 1 shows that, for 1 7~ 0, it is 
still a moderately good approximation for U as small as 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 I I 

0.2 0.4 0.6 0 .8  
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Fig. 1. Comparison of g,t(r, 0/, U) and Gaussian-typ¢ functions for 
l = n = 3 and 4. Solid lines are proportional to r"G(U + B) with 
U = 0.005 ~2, B = 0.02 A2; dotted lines are proportional to g,= with 
0/3 = 14"4A-1, 0/4 = 16"4~'-1" 
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B/4. Fig. 2 shows a close fit of a combination of g,0 
functions with the spherical part of (3) even for small U. 
The overall shape of g,t depends only weakly on ol; 
therefore, linear combinations of g,l with a common 
value of ot can in general be fitted reasonably well to 
corresponding linear combinations of Gaussian-type 
functions with a common value of cr or B. 

We conclude that ED ref'mements with Gaussian and 
exponential functions should give very similar results 
and that Path(r) may also be parametrized successfully 
with exponential deformation functions, except at very 
low temperatures. The most questionable approximation 
in the theory is the representation of the free-atom 
density po(r) by a Gaussian function ZG(B) [(2)]. The 
Gaussian decreases much faster with r than the actual P0. 
Thus, the effective Z for the best fit of the two functions 
is usually much smaller than the number of electrons of 
the atom, e.g. Z ~_ 8e, B _~ 0.01 ,~.2 for K. For real 
atoms, the agreements with the observed diffraction data 
obtained from the anh, (ED, G) and (ED, E) models will 
therefore not be exactly identical. In addition, the refined 
value of U is expected to be model dependent. In what 
follows, we discuss ref'mements of the structures of 
K2PtC16 and Si and their interpretations in terms of 
anharmonic motion and bonding effects. 

3. Electron density of K2PtCl 6 

Commercially available K2PtC16 powder (Fluka puris. 
p.a., 40wt% of Pt) was recrystallized from distilled 
water. The chemical composition was ascertained by 
electron probe microanalysis (instrument ARL-SEMQ) 
of five crystals from the same batch as the one used for 
the diffraction experiments. The reference standards were 
KC1 (puris. Fluka, >99.5%) and metoallic Pt. All crystals 
were covered by a layer of gold 300 A thick to ensure the 
necessary electrical and thermal conductivities. The cross 
section of the electron beam was 50 x 501.tm. The 
characteristic emissions analyzed were Ko~ of K and C1, 
and Mot of Pt. After the usual corrections for absorption 
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Fig. 2. Comparison of spherically symmetric g,0(r, a, U) and Guassian- 
type  funct ions .  Sol id  line proportional to P4 sG( U "Jr B) of  (3) with 
U = 0.005 .~2, B = 0.02 .~2; dotted line Kog~ + Kzgzo + Kag4o with 
tx = 12.8 ~-l. The K, have been adjusted to produce a close fit of the 
curves. 

and secondary fluorescence, averaged results of the 
analyses are 16.74(14), 38.26(67) and 45.00(71)wt% 
for K, Pt, and C1, respectively. The e.s.d.'s represent the 
sample variances. The respective calculated values for 
pure K2PtC16 are 16.09, 40.14 and 43.77wt%. The 
underestimation of Pt with respect to K and C1 is 
probably due to systematic errors since different 
reference standards with strongly differing thermal and 
electrical properties had to be used. The atomic ratio of 
C1 to K, determined with a single reference standard, is 
2.96 (5). We conclude that impurities, e.g. NH + replacing 
K +, amount to less than 1 at.%. 

K2PtC16 crystallizes in the cubic space group Fm3m, 
Z = 4 ,  a=9.743_(3)A at room temperature. Site 
symmetries are m3m for Pt at 0, 0, 0; 43m for K at 
1/4,1/4, 1/4 and 4ram for CI at x,0,0 (x-~ 0.237). 
Refinements of various combinations of anh and ED 
models were reported by Restori & Schwarzenbach 
(1993, hereafter referred to as RS). At room temperature, 
three of these models provided satisfactory parametriza- 
tions of the densities near K and CI: (i) Gram-Charlier 
formalism; (ii) exponential-type electron-density func- 
tions with two exponents a for each atom, one for the 
monopolar and another for the multipolar terms; (iii) both 
anharmonic and electron-density functions with a single 
exponent per atom. Model (i) provided the most 
economical parametrization but this is per se not 
sufficient to prove the presence of anharmonic motions. 
The corresponding difference electron-density maps 
(Restori & Schwarzenbach, 1993, 1995) show a 
prominent octopolar density centered on K with maxima 
of "-'0.5 e ~-3 peaking on the tetrahedral (111) directions 
at ~0.4.~. from the atom center. Several (unpublished) 
neutron data sets were not sufficiently accurate to 
corroborate the anharmonic interpretation. The room- 
temperature X-ray data set containing 489 absorption- 
corrected inequivalent intensities measured with Ag Ko~ 
radiation ( 2 -  0.5608A) to (sin0/2)m~x = 1.3,~ -1 has 
been deposited by Restori & Schwarzenbach (1995). In 
this paper, we report anh and ED refinements against 
simulated data, against the room temperature data of RS 
and against an additional data set measured at 100K 
using the same crystal as RS* (Table 1). Atomic form 
factors and the dispersion corrections for Ag radiation 
were taken from International Tables for X-ray Crystal- 
lography (1974). We concentrate mainly on the site of K. 
C1 has nearly the same diffracting power but is described 
by many more parameters. We also report aspherical 
densities near Pt. The significance of the spherical 
anharmonic terms is doubtful, the free-atom form factors 
and dispersion factors, in particular those of Pt, being of 
uncertain quality. 

*Structure amplitudes at 100K have been deposited with the IUCr 
(Reference: CR0500), Copies may be obtained through The Managing 
Editor, International Union of Crystallography, 5 Abbey Square, 
Chester CH1 2HU, England. 
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Table 1. Data collection of  K2PtCl 6 at 100K 

Crystal data 

Mr = 486.012 
a = 9.673 (2) ~, 
V = 905.1 (6) ,~3 
D x = 3.567 Mg m -3 
Ag K~ radiation 
2 = 0.5608 ,~ 

Data collection and refinement 

Enraf-Nonius CAD-4 
diffractometer 

w/20 scans 
Absorption correction: analytical 

Tmj n = 0.452, Tma x = 0.496 
10941 measured reflections 
758 independent reflections 
758 observed reflections 

[I > 10or(1)] 
Rim = 0.017 
0ma x = 60 ° 

Cell parameters for 16 reflections 
0 = 7-14.5 ° 
/z = 9.76 mm-I 
T ---- 100 (2) K 
Octahedron { 111 } 
0.097 (2) mm between faces 

h , k , l = O , O , O - - +  30 ,30 ,30  
3 standard reflections 

monitored every 2 hours 
intensity variation insignificant 

Refinements on IF[ 2 
Weights w = l /a ( IFI  z) 
Extinction correction: 

Becker & Coppens (1974, 1975) 
type I, Lorentzian distribution 

3.1. Refinements against calculated intensities 

The theoretical results were first tested with ED least- 
squares refinements using exponential functions. IFcl 2 
values calculated with the anh model for K served as 
observations; they were not modified with random errors. 
Weights were chosen proportional to IFc1-2 so as 
to be roughly similar to the weights of the measured 
diffraction data. Each of the resulting data sets of 
simulated intensities comprised 1126 reflections with 
(s in 0/2)max = 1.76 ~-I .  First, structure amplitudes were 
calculated with harmonic displacement parameters for all 
atoms and a single anharmonic term for K, either third 
order with the numerical value from a refinement of the 
293 K data (Table 2) or fourth-order aspherical or fourth- 
order spherical. Corresponding refined a values of the 
ED model will be denoted by ot 3, 014. a and 0/4.,.. 
Subsequently, larger anharmonic terms and/or smaller 
values of U(K) down to 0.005 ,~z were assumed. Finally, 
all three anharmonic terms of K were included together. 

For data including only the small c I 2 3 ( K )  t e r m  from 
Table 2, a standard refinement including only harmonic 
displacement factors gave R(IFI)= 0.00128. Note that 
c ~23 does not contribute to the reflections with parity eee. 
The largest discrepancies between simulated and calcu- 
lated structure factors of about 0.65 e (about 1% of IFI) 
occurred in the sin 0/2 range of 0.6 to 0.8 ~-1. When 
the population of an ED octopole is refined, 
R(IFI) = 0.00004 and or(K)= 33 (2),~, -I. This shows 
that the anharmonic motion as observed in refmement 
A of RS can be modeled nearly perfectly with an 
exponential-type electron-density function. When c123(K) 
is ten times larger, R(IFI) also increases tenfold but is 
still very small. 

Assuming different values for U(K) shows that R(IF[) 
increases with decreasing values of U(K). The character- 

istics of or(K) a r e :  o~4, a is about 10% larger than c~3; all 
or(K) increase with decreasing U(K); for data including a 
single anharmonic term, refined values of or(K) depend 
on U(K) and also on the e.s.d.'s assigned to the simulated 
intensities. For data computed with the aspherical 
anharmonic terms, refmed values of U(K) are similar to 
the values used for generating that data. In contrast, for 
data computed with the spherical anharmonic term and 
U(K) < 0.04 ~2, refined values of U(K) and o~4,s(K ) a r e  

strongly correlated. In this case, the refined value of 
U(K) is biased: if c 1~11 + 2c 1122 > 0, it is smaller than the 
value used for generating the data and vice versa. 
Corresponding reliability factors are small even for small 
values of U(K). Refinements on data sets including all 
anharmonic terms of K confirm these results, except that 
the refined value of or(K) depends on the relative 
magnitudes of the terms as much as on the value of U(K). 

Refinements on data generated with all anharmonic 
terms of K of Table 2 and U(K) ---- 0.005 ,~2 never result 
in R(IFI) > 0.001. X-ray data measured at 8 K (unpub- 
lished) indicate that U ( K ) >  0,005,~ 2 at the lowest 
temperatures. Therefore, the anh and the ED model are 
both capable of producing an acceptable fit to the data of 
K2PtC16 at all temperatures, in agreement with theory. 

3.2. Deriving the variance B of the Gaussian atom from 
real data 

The parameter B of (3) may be estimated from the 
results of anharmonic refinements on the room-tempera- 
ture and 100 K data (Table 2). Maps of partial dynamic 
density were drawn for each contributing term separately 
by summing Fourier series of partial structure factors. 
From (7), the positions of the extrema give four 
independent estimates of U + B, two for l -- 0 and one 
each for l = 3 and 4. The extremum for the + sign of 
l = 0 is weak and difficult to localize. This leaves three 
estimates at each temperature (Table 3). Additional 
estimates for U + B obtained from the extremal values of 
the densities are less accurate because of series-termina- 
tion errors, particular at 100K. The precision is also 
limited by the finiteness of the grid. With the values for 
U(K) taken from Table 2, B(K) is 0.0068(10).A 2 at 
293 K and 0.0099 (8),~z at 100 K. These results are in 
fair agreement with the value of 0.0102,~z obtained by 
fitting a Gaussian to the Fourier transform of the form 
factor of K. Thus, the locations of the maxima of electron 
density are reasonably consistent with the approximation 
of the free-atom density by a Gaussian. 

3.3. Refinements against real data 

In these refinements, the parameters of all atoms, K, C1 
and Pt, were adjusted. Refinements were terminated if all 
ratios (full shift/standard deviation) < 10 -4. Reliability 
factors, displacement parameters U, difference density 
and residual maps at 293 K obtained for the anh, ED and 
combined anh-ED models have been published in RS. In 



374 INTERPRETATION OF ELECTRON DENSITIES DETERMINED BY X-RAY DIFFRACTION 

Table 2. Results of the anharmonic and standard harmonic (*) refinements of K2PtCI 6 

The anharmonic coefficients c jk ..... are multiplied by 104, the dimension of the nth order is ,~" (coordinate system with axial lengths 1). 

293 K I00 K 293 K 100 K 

S 1.213 1.514 Scale 2.983 (2) 1.2381 (7) 
2.080* 1.828" 2.944 (1)* 1.2252 (4)* 

R(IFI) 0.0067 0.0064 104 gext 0.321 (2) 0.116 (3) 
0.0119" 0.0076* 0.286 (2)* 0.080 (3)* 

wR(IFI  z) 0.0091 0.0112 
0.0157" 0.0136" 

K CI 
U (~2) 0.03784 (15) 0.01343 (5) x 0.23719 (3) 0.23920 (2) 

0.03697 (7)* 0.01286 (2)* 0.23743 (2)* 0.23926 (1)* 
c 123 4.2 (4) 0.46 (8) Ull (~2) 0.01665 (12) 0.00628 (5) 
C tILl 0.9 (2) 0.37 (5) 0.01606 (6)* 0.00581 (2)* 
C ltzz 0.27 (14) 0.10 (2) U22 (~z) 0.04342 (16) 0.01642 (6) 

0.04168 (7)* 0.01570 (2)* 
Pt c Ill 0.0 (2) 0.09 (9) 

U (~2) 0.01559 (3) 0.00494 (2) c ~2~- -2 .7  (5) -0.33 (7) 
0.01465 (1)* 0.004601 (4)* c llll 0.14 (14) 0.20 (4) 

c lltl 0.60 (3) 0.120 (6) c 2~-~-2 2.9 (4) 0.55 (5) 
c t122 0.27 (1) 0.043 (2) c 1122 0.49 (8) 0.134 (13) 

¢2233 0.5 (2) 0.09 (3) 

order to reveal the aspherical features in these maps, the 
spherical features centered on the atoms were fitted with 
empirically chosen functions and then subtracted. This 
procedure failed when applied to the corresponding maps 
obtained at 100K: there, the series-termination effects 
are much more pronounced than at room temperature and 
significant features are immersed in noise arising from 
ripples about the atomic centers. An extension of the 
Fourier series with calculated high-order data is not 
practical because (sin 0/2)max > 3 A-  1 would be required 
to reduce the intensity of the ripples to the (non- 
negligible) level observed at room temperature. There- 
fore, we do not present any maps at 100K and discuss 
only the fits obtained in the refinements. 

Refinement A: The ref'mements of the parameters of 
the anh model (A of RS) result in acceptable agreements 
with the observations at both 293 and 100 K (Table 2). 
The displacement factors U are larger than those obtained 
with standard harmonic ref'mements by 2 to 8%, on 
average by 3.6% at 293K and 5.1.% at 100K. The 
residual maps show no significant features near K and C1 
(see RS). Results at the two temperatures are qualita- 
tively very similar and differ only in some details: (i) the 
dominating third-order terms of both K and C1 have the 
same signs and contribute similarly to Pan~ of (3); (ii) the 
values of the extrema of the third-order term of K are 
proportional to c123(U + B) -3 = 4.6 (5) ,~-3 at 293 K and 
3.4(7)A -3 at 100K and thus are similar. The fourth- 
order terms, however, are relatively more important at 
100K. 

Refinement B: The ED model equivalent to the 
Hirshfeld model with a single radial exponent a per 
atom, as described in §2, was relatively unsuccessful at 
room temperature [refinement B of RS, S = 1.334, 

* 1 wR(IFI 2) = 0.00986, offK) = 7.2 (5) A - ,  U(K) = 

Table 3. Estimates of U + B (~2) of thermally smeared 
K, derived from the extrema of partial electron densities 

of order l along direction [uvw] using (7) 

I [uvw] 293 K 100 K 

3 [ I l l ]  0.0449 (10) 0.0238 (8) 
4, s Spherical 0.0443 (10) 0.0222 (7) 
4, a [100], [111] 0.0447 (I0) 0.0241 (7) 

0.0350 (3)~2]: reliability factors are higher than for the 
anh model A; the residual map in RS shows that a large 
portion of the features about K and C1 is not accounted 
for; c~(K)oiS much smaller than the expected value of 
about 33 A -1. This contrasts with the theoretical predic- 
tions and the refinements on calculated data. In fact, the 
least-squares minimum published in RS is not unique. 
Starting the refinement with c~(K) = 35~, -1 leads to an 
apparently different minimum at wR(IFI 2) = 0.00982, 
or(K) = 19(3),~ -1 and U(K) = 0.0207(45).~ 2 but the 
density around K is still not fully parametrized as 
evidenced by a residual map showing important features. 
The value of U(K) is unrealistically small, its large e.s.d. 
being due to an important correlation with u(K). When 
U(K) is fixed at 0.0378 ,~2 as obtained in the anh model, 
the ref'mement converges at wR(LFI 2) = 0.00991 and 
or(K) = 24 (3)A-1; the corresponding residual map in 
the region of K is flatter than before but still not 
acceptably flat. We conclude that the standard ED model 
does not result in a unique parametrization of the 
293 K data and always appears to be less successful than 
the anh model. For the 100K data, the least-squares 
minimum was found at S = 1.248, wR(IFI 2) = 0.00918, 
o t ( K ) = 2 7 ( 6 ) A  -1 and U(K)=0 .0158(25 ) ,~  2, i.e. at 
lower reliability factors than for refinement A but an 
unacceptably large value for U(K). 
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Refinements C and D: In RS, it was shown that an ED 
model including more functions (l - 3, n -- 5; l = 4, 
n = 6) was as unsuccessful as model B in parametfizing 
the densities near K and C1 as long as one single radial 
exponent ot per atom was used (refinement C). In 
contrast, the adjustment of two radial exponents, O~sphe r 

for the monopolar functions and Otaspher for the aspherical 
functions, resulted in a flat residual density (refinement D 
of RS). At both temperatures, 0tspher(K ) "~ 4.~ -1 and 
0tspher(K ) "~ 24 to 30.~ -1, but convergence was difficult 
to attain because of high correlations between the 
parameters. 

3.4. Arguments in favor of  anharmonicity 

We conclude that the anh model parametrizes the 
electron densities at K and C1 efficiently at both 
temperatures. The basic ED model is clearly inferior at 
room temperature, even though it comprises more 
adjustable parameters; but at 100K, judging only from 
the reliability factors, it appears to be at least as suitable 
as the anh model. Remembering that both models are 
parametrization schemes rather than physical theories, 
arguments in favor of the one or the other must be based 
on consistency with physical or chemical theories instead 
of on the fit with the diffraction data. The most obvious 
property to investigate is the temperature dependence of 
the refined quantities. The ED populations Pntm+ ought to 
be independent of the temperature whereas the displace- 
ment factors depend on the temperature: U ~-- k2T above 
the Debye temperature, c jkm ~_ k3 T2, c jkmn ~-- k4 T3, where 
k2, k 3, k 4 are proportionality constants (Willis & Pryor, 
1975). If the ED model has been used to represent 
anharmonicity instead of bonding effects, then the ED 
populations are functions of temperature as evidenced 
by (6). 

Fig. 3 shows that the temperature dependence of the 
U's and the C jkm agrees reasonably well with the 
predictions of the anh model. At 100K, the U's are 
somewhat larger than predicted by a straight line passing 
through the origin, except for Pt, as would be expected 
for a temperature near the Debye temperature. The 
Pt--C1 bond is nearly, but not quite, rigid since 
UI1(C1) > U(Pt). U22(C1) and U(K) are of the same 
order of magnitude; we recall that K and C1 together form 
a cubic close packing. The aspherical fourth-order term 
cllll _ 3c 1122 of K is negligibly small; that of Pt agrees 
very closely with the T 3 law (not shown in the figure). 
The spherical fourth-order terms C l l l l  .qt_ 2C 1122 of K and 
Pt, however, decrease relatively slowly with only T °9 
and T 1"6, respectively. Their physical significance is not 
clear. They may in part be due to bonding features but 
monopolar quantities are also most sensitive to deficien- 
cies of the model, such as uncertainties in the free-atom 
scattering factors and the extinction correctiorL The 
fourth-order c jg"~ of C1 cannot be decomposed easily 
into aspherical and spherical contributions since the 

harmonic U's are distinctly anisotropic; individually, 
they do not obey the T 3 law. 

In contrast, the populations obtained with the ED 
refinement for the two temperatures differ strongly. We 
also recall that refinements B result in U values that differ 
considerably from those obtained in refinements A and 
the standard harmonic refinements. Since the dominant 
third-order aspherical electron-density features near K 
and C1 obey the T 2 law, we conclude that anharmonic 
effects are much more important than bonding effects. 
The geometric interpretation of the former is obvious: the 
amplitude of the vibration of K is larger towards the 
unoccupied octahedral void in the packing of C1 and 
smaller towards the void occupied by Pt; the c122(C1) 
coefficient agrees with the curvilinear movement of C1 
on the surface of a sphere corresponding to the libration 
of the PtC16 octahedron. Pt also appears to exhibit a small 
anharmonic motion; the sign of c l l l~ -  3c 1~22 indicates 
larger displacements towards the faces of the coordina- 
tion octahedron. 

Hester, Maslen, Spadaccini, Ishizawa & Satow (1993) 
have published a very different interpretation of 3p maps 
for K2SiF 6 whose structure is isomorphous with K2PtC16. 
The difference density near K is very similar in both 
structures. The authors argue against anharmonicity and 
in favor of bonding effects because they find qualita- 
tively similar features at 100 K and at room temperature. 

0.04- 

0.03 - 

0 0 2  

U(Pt) 

0.0o- , ~ " ' ~ ' -  - 
I I 

0 100 200 300 

(a) 

0.0004- 

0.0002 - 

0.0000- 

-0.0002- 

• 1 / , ~ T  
100 200 300 

(b) 
Fig.  3. Plots  o f  (a)  the harmonic  and (b) the th i rd-order  anharmonic  

d i sp lacement  parameters  in K2PtCI 6 vs tempera ture  T; anharmonic  
refinement A. 
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The present work shows that this result agrees with both 
anharmonic and bonding effects and that the argument in 
favor of  the latter is not conclusive.* 

4. Anharmonicity in silicon 

Silicon is known to exhibit anharmonicity in addition to 
electron-density effects even at room temperature 
(Roberto, Batterman & Keating, 1974). Precise structure 
amplitudes measured with the Pendellosung method 
have been reported by Teworte & Bonse (1984) and by 
Saka & Kato (1986). These data have been used 
extensively in recent years to study the electron density 
(Spackman, 1986) and to test maximum-entropy methods 
(Sakata & Sato, 1990; Jauch & Palmer, 1993). They 
include 61 structure amplitudes, 30 measured at 
2 = 0 . 4 ' ,  16 with AgKoq and 15 with MoKotl  
radiation; they do not include any pseudo-extinct 
reflections with parity h .1. k + l = 4n n t- 2; 
(sin0/2)max = 1.04]k-1; a = 5 . 4 3 1 ] k .  We have used 
these data to ascertain the presence of  anharmonic 
motion and to test the separability of  anharmonic and 
bonding effects. Consequently,  we have refined two 
models (Table 4): 

(A) the ED model given by (4) and (8) with 
exponential  radial functions, comprising as adjustable 

parameters U, P000,/'200, P400, PK3, PK4 and or; 
(B) the combined ED and anh model, comprising the 

parameters of  (A) and C 123, C 1111 and C 1122 

Atomic form factors and the dispersion corrections for 
Mo and Ag radiation were taken from International 
Tables for X-ray Crystallography (1974). The dispersion 
corrections for 2 = 0 . 4 A  were estimated to be 
f '  = 0.017 and f "  = 0.018 e. The results do not depend 
sensitively on these values; an increase of  all f '  by 10% 
in model  B affects the value of  U by 2.6 e.s.d. 's and the 
other parameters by only a few tenths of  an e.s.d. 

The values of U obtained in refinements A and B 
(Table 4) agree well with the value of  0.00579 (1) A 2 
reported by Saka & Kato (1986). T h e  third-order 
anharmonic coefficient in model B is in close agreement 
with the value of  17.8 (18) x 10 .6/~k 3 calculated using U 
and the structure factor of  the 222 reflection from neutron 
diffraction at 2 8 8 K  (Roberto, Batterman & Keating, 
1974). The anharmonic fourth-order terms have been 
ignored in previous work; in the present refinements, the 
spherical component  in particular appears to be non- 

* One of the referees remarked that K2PtCI 6 is easily contaminated by 
NH + replacing K +. Electron probe microanalysis indicates this 
contamination to be less than 1% of K +. NH4 + forms hydrogen bonds 
with the 12 neighboring CI atoms and is therefore orientationally 
disordered. The contribution to 5p of a disordered H atom of an 
impurity constituent is expected to be minor. The observed extrema 
near K are not located on K-CI contacts, their value of 0.5 e ~ ,  -3 
approaches that expected for an ordered H atom near 100% occupancy 
and their distance of 0.4 A from the atom center is far too short for an 
N--H bond. 

Table 4. Results of the refinements of  Si 

The anharmonic coefficients c J~n of model B are multiplied by 10 6, the 
dimension of the nth order is A n (coordinate system with axial 
lengths 1). 

Model A Model B 
S 4.446 3.554 
R(IFI) 0.00113 0.00120 
wR (_ IFI 2) 0.00158 0.00123 
U(A, 2) 0.005817 (2) 0.005754 (6) 
P000 -0.31 (3) -0.26 (3) 
P200 -3.4 (3) -2.5 (3) 
P400 3.7 (3) 2.8 (3) 
Ptc3 - -  1.89 (9) - 1.64 (8) 
PK4 --0.85 (5) --0.71 (5) 
a 3.00 (4) 3.11 (4) 
c 123 19.7 (19) 
c llll -7.3 (8) 
c 1122 -3.8 (3) 

negligible. The dynamic density due to the anharmonic 
terms shows extrema of  .1.0.8 and - 1 . 4 e A ,  -3 at a 
distance of  0.18 ]k from the center of  the atom (Fig~ 4). 
The dominating third-order term contributes -t-1.1 e A -3. 
For comparison, the dynamic difference density centered 
in the middle of  the S i - - S i  bond amounts to only 
0.2 e ~-3 .  Even though the ED populations and c~ values, 
and therefore the static bonding densities, from refine- 
ments A and B differ slightly, the corresponding dynamic 
densities (calculated with the ED deformation functions 
only) are indistinguishable. We conclude that the effects 
of  anharmonicity and bonding overlap slightly even 
though the respective features appear to be well 
separated. 

Fig. 4. Dynamic difference density ~p----p- Ppro in silicon, plane 
(110), [111] from lower left to upper right, obtained with a Fourier 
summation of structure factors calculated with the anharmonic and 
electron-density coefficients of refinement B; (sin 0/2)ma~ = 1.6 ~-I. 
Contour intervals are 0.1 e.~ -3, the zero contour is omitted. The 
Si--Si distance separating the centers of the octopoles is 2.352A. 
The wiggles of the 0.1 e ~-3 contour about the midpoint of the 
Si--Si bond are due to series-termination effects; they are absent if 
the structure factors are calculated with the deformation functions 
only. 
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Which properties may be determined at high tempera- 
ture? To answer this question, we have calculated 
diffraction data with the following parameters: U and 
c 123 6 times and 36 times larger, respectively, than the 
values found at room temperature, corresponding to a 
temperature of about 2500K, the Debye temperature 
being 543 K; population parameters of the deformation 
functions of ref'mement B~ no fourth-order anharmonic 
terms; (sin 0/2)max - -  1.6 A - l ;  cr(lFI z) - 21El. The cor- 
responding dynamic difference density map resembles 
closely that of K2PtC16 near K (see RS): extrema of 
height 4-0.72 e ,~-3 are found at a distance of 0.36 A from 
the center of the atom. Note that the value of these 
extrema is smaller than at room temperature. The 
parameters of model A were then refined against these 
synthetic data to RIFI = 0.008. This shows that the ED 
functions are perfectly capable of representing the 
anharmonic motion of Si but they do not parametrize at 
all the comparatively weak bonding effects in the middle 
of the S i - -S i  bond. With the high-temperature data 
alone, it would be impossible to distinguish between 
anharmonicity and bonding. 

5. Conclusions 

The bonding-electron-density and anharmonic models 
are often used as parametrization schemes rather than as 
physical theories. A successful refinement of a model as 
judged by the quality of the fit with the experimental data 
yields a picture of the thermally smeared electron density 
but usually it does not provide a physical interpretation 
of the result. Even though the anh and ED models, when 
applied to real data do not give exactly the same results, 
both are usually capable of giving satisfactory agreement 
factors. The interpretation of electron-density maps is 
therefore ambiguous, in particular in the case of heavy- 
atom compounds. 

The conventional view that anharmonicity and bond- 
ing effects can be distinguished with X-ray data 
measured at different temperatures is essentially correct. 
Contrary to widespread belief, however, this cannot be 
achieved by visual inspection of dynamic difference 
density maps since the relevant features vary in 
qualitatively the same way with temperature for both 
models: the lower the temperature, the closer to the atom 
center are the extrema of the difference density while the 
values of the extrema increase or are roughly constant. 
Arguments for the correct model are given by the 
temperature dependence of harmonic and anharmonic 
displacement factors, and of population factors of 
deformation functions: the former should vary with T, 
T 2 and T 3 according their order and symmetry, the latter 
should be independent of temperature. However, the 
anharmonic terms of atoms on non-cubic sites are not 
easily decomposed into their multipolar components if 
the Gram-Charlier series is developed about an aniso- 
tropic Gaussian. Fourth-order coefficients representing a 

combination of monopolar, quadrupolar and hexadeca- 
polar properties are not expected to vary with a simple T 3 

law. 
A joint refinement of anh and ED parameters may give 

meaningful results only if the corresponding electron- 
density features are well separated in space, some being 
found near the atomic centers and others in the 
internuclear region. However, an alternative pure ED 
model comprising two sets of functions with very 
different values of the exponents ot should then also be 
successful. A satisfactory analysis of an electron density 
comprising important contributions of both anharmoni- 
city and chemical bonding to the same region of space is 
well nigh impossible with X-ray data alone. 

The aspherical density features in K2PtC16 are all 
found near the atom centers. They appear to be due 
nearly exclusively to anharmonicity as evidenced by the 
excellent fit of the T 2 and T 3 laws with the aspherical 
anharmonic displacement factors of all atoms. In Si at 
room temperature, anharmonicity and bonding features 
occupy very different regions in space and their 
contributions can therefore be identified with a certain 
degree of confidence. 

We thank Mr G. Burri for carrying out the electron 
probe microanalysis of K2PtC16. This work has been 
supported by the Swiss National Science Foundation. 

APPENDIX A 

The convolution of an exponential-type deformation 
electron-density function (with normalizing factors) and 
a Gaussian function is the integral 

P,,/m+ = [(2zrU) -3/2 exp( - r z /2U)]  

* [or 3+'' r"Ylm+ exp(--otr)] 

= ot"+a(2rrU) -3/2 f u ''+2 exp(-otu)du 
0 

x f exp ( - [ r  - ul 2/2U) Ytm+ dS2, 

where Ylm:l: is an angular surface harmonic function. 
Expansion of [r - u[ ~ = r 2 + u 2 - 2r-  u leads to the 
integral 

f exp(u- r)Ylm+(O 2, q92)dX2 2 = 4n'i / (ur)yl,,,+(O 1 , q)l), 

i I being the modified spherical Bessel functions, 

( 3 ) ' s i n h ( z )  
it(z) = zJ ~ z  z 

exp(z) ~ ( -  1)k(l + k)! 

-- 2z Z_,k=0 k ! ( l -  k)!(2z) k 

t (l + k)! 
- ( -1 ) '  exp(---z) Z k ! ( l -  k)!(2z) k" 

2z k =0 
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This leads to the definition of the functions g,t mentioned 
in the main text, 

PnZm+ : Ytr~+gnt( r, Or, U) 

g,t(r, or, U) 

: (2/yr) l/2otn+3 U-3/2 exp(_r2/2U) 
O 0  

x f u "+2 exp( -u2 /2U - otu)it(ru/U)du. 
0 

The preceding integral is evaluated by setting 1/2U = p, 
ot 4- r~ U = q+, 

O 0  

Dv( p, q) -- f x ~ e x p ( - p x  2 - qx) dx 
0 

= [ ( - l f /2] ( zr /p )  1/2 

× OV[exp(qZ/4p) erfc(q/2pl/Z)]/Oq~. 

This leads to the final result 

g,t = ctn+3 U-3/2 exp(--r2 /2U)  

l (l + k)! ( U ) k + l  

x Z k I ( l - k ) !  \~rrJ k=0 

× {(--1)~O._k+,(-) - (--1)tOn_k+t(+)}; 

Dv(+ ) = ( - 1 ) v u  (v+l)/2 

{ x exp[(c~U +r )2 /2u ]e r f cL(2u ) l / 2  j 

( o t U 4 - r )  ( 2 )  1/2 ( o / ) }  
x F v \ U1/2 -- Gv U -4- r . 1/2 

Fv+l(Z) -- zFv(z ) + vF~_I(Z); Fo(Z ) = 1; 

Gv+l(Z) = zGv(z) n t- vGv_l(z); Go(z ) = 0; 

(9) 

(10) 

F1 (z) = z, 

(11) 

Gl(z) - -  1. 

(12) 

These expressions are far too complicated to solve 
analytically the expression Op.zm+/Or=O, but the 
positions and values of the extrema can be found with 
numerical methods. These calculations show that for 
l = n the distances of the extrema from the atom center 
are given by 

rextr(U, 5) "- u1/Zz~n(Z); Z -- otU 1/2, (13) 

3 
A,(Z) ~_ n/z  + Z ~ Cnj/(4z j + 2n +j) ,  (14) 

j=l 

Table 5. Coefficien~ C,v for the evaluation of  equations 
(13) and (14) 

3 6.783597 2.775752 0.970753 
4 7.881257 4.142102 0.475391 
5 8.883658 5.574661 0.0 

where the Cnj (Table 5) are determined numerically to 
approximate the exact solution to better than 0.3% in the 
range 1/4 < z < 15. This type of calculation shows that 
the exponential and Gaussian deformation functions 
yield similar electron densities, except for small values 
of U. 
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